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Multiobjective Control of Power Plants Using
Particle Swarm Optimization Techniques

Jin S. Heo, Kwang Y. Lee, Fellow, IEEE, and Raul Garduno-Ramirez

Abstract—Maultiobjective optimal power plant operation re-
quires an optimal mapping between unit load demand and pressure
set point in a fossil fuel power unit (FFPU). In general, the opti-
mization problem with varying unit load demand cannot be solved
using a fixed nonlinear mapping. This paper presents a modern
heuristic method, particle swarm optimization (PSO), to realize
the optimal mapping by searching for the best solution to the mul-
tiobjective optimization problem, where the objective functions are
given with preferences. This optimization procedure is used to de-
sign the reference governor for the control system. This approach
provides the means to specify optimal set points for controllers
under a diversity of operating scenarios. Variations of the PSO
technique, hybrid PSO, evolutionary PSO, and constriction factor
approach are applied to the FFPU, and the comparison is made
among the PSO techniques and genetic algorithm.

Index Terms—Genetic algorithm (GA), multiobjective optimiza-
tion, particle swarm optimization (PSO), power plant control, pres-
sure set point scheduling.

1. INTRODUCTION

ECENTLY, the reliable supply of electric power has been
R challenged severely because accidental blackouts and en-
vironmental impacts cause many critical problems in society.
Furthermore, stringent requirements on conservation and life
extension of the major equipment of power plants have to be
fulfilled. To solve these problems, various mathematical ap-
proaches have been suggested for multiobjective optimization
of power plants, such as minimization of load tracking error,
minimization of fuel consumption and heat loss rate, maximiza-
tion of duty life, minimization of pollutant emissions, and so on.

First, the fossil fuel power unit (FFPU) must meet the load
demand of electric power at all times, at constant voltage, and
at constant frequency [1]. Although a typical daily cycle exists
on the load demand for the FFPU, a control system basically
has to provide optimized wide-range cyclic operation, by be-
ing able to follow any given unit load demand. To realize the
wide-range operation, a set point scheduler is used by mapping
demand for power and pressure from the given unit load demand.
Both multiobjective optimization and set point scheduling are
achieved through optimal mapping between the given unit load
demand and pressure set-point scheduling. In general, a fixed
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nonlinear mapping does not allow for process optimization un-
der operating conditions different from the originals. Moreover,
the optimization process has to be implemented in the on-line
operation of the FFPU.

This paper presents a modern heuristic method, particle
swarm optimization (PSO), for the multiobjective optimal power
plant operation. PSO has been developed for the nonlinear con-
tinuous optimization problem, based on the experience gained
from the study of artificial life and psychological research. Eber-
hart and Kennedy developed PSO, based on the analogy of the
swarm of birds and the school of fish [2], [3]. One of the main
goals is to examine how natural creatures behave as a swarm
and to reconfigure the swarm model computationally. It is well
known that the PSO techniques can provide a high-quality solu-
tion with simple implementation and fast convergence [2]-[13].

When the unit load demand is received from the control cen-
ter, the balance of the plant should be maintained by control-
ling the boiler and the turbine so the generator can generate the
power. In generating the power required by the unitload demand,
the steam pressure needs to be set to an optimal value, which
depends on various operation requirements, such as load fol-
lowing, fuel conservation, life extension of equipment, reducing
pollution, and so on. These requirements are often conflicting,
and in this paper, the optimal set points are determined by solv-
ing the multiobjective optimization problem of these conflict-
ing requirements. The multiobjective optimization problem was
tackled earlier with an analytic mathematical programming [17]
and genetic algorithm (GA) [20]. However, to implement the op-
timization in real time, it is necessary to develop a technique
that requires less computation time and is easier to implement.

Therefore, this paper tests the performance of the PSO tech-
niques in the multiobjective optimization problems in the dy-
namic environment of the FFPU. There are several variations of
the basic PSO technique that are known to perform better than
the basic PSO, but their performance is problem dependent.
Therefore, by comparing these techniques, the paper investi-
gates which technique is most appropriate for the multiobjective
optimization of the FFPU.

In FFPU, the swarm consists of agents that are components
of the control system. Each agent searches for the best solution
in the solution space with given rules and informs its perfor-
mance to other agents. The agent is expressed as a vector in
the solution space, which is a set of control inputs. In this pa-
per, three variations of the PSO technique i.e., the hybrid PSO
(HPSO), evolutionary PSO (EPSO), and constriction factor ap-
proach (CFA)—are applied to the FFPU, and the comparison
is made among the PSO techniques and GA. Thus, the PSO
technique that can be successfully applied to the FFPU and that
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Fig. 1. Coordinated control structure for FFPU.

is most appropriate for the multiobjective optimization problem
in the dynamic environment is shown.

Following this section, the power plant control system is de-
scribed in Section II. Section III describes the PSO techniques
(HPSO, EPSO, and CFA). Section IV shows the implementa-
tion of the PSO techniques in the FFPU to demonstrate the
feasibility of the proposed approach. The final section draws
some conclusions.

II. POWER PLANT CONTROL SYSTEM
A. Control Structure

There have been several control strategies for the FFPU: boiler
following control, turbine following control, and coordinated
boiler-turbine control strategies. The boiler following approach
has faster but less stable response to load changes. The tur-
bine following approach has more stable but slower response
to load changes. The coordinated control strategy is meant to
synthesize the advantages of the two approaches while mini-
mizing their disadvantages [14]. For the control system to have
more stable and faster response to load changes, this paper uses
the coordinated control scheme, which requires references (or
set points) for both power demand (E,;) and pressure demand
(Py). The control structure of the coordinated control is shown
in Fig. 1, where the controller is developed in three main mod-
ules: reference governor, feedforward controller, and feedback
controller. The multiobjective optimization is performed in the
reference governor. The results of the multiobjective optimiza-
tion are the set points for the power and pressure (E; and Fy;)
for the feedforward and feedback controllers. The outputs of
the two controllers are added to become input to the FFPU.
The output of the FFPU is fed back to the feedback controller,
which regulates the output variations due to load disturbances
and compensates for the variation in the load demand.

B. Power Unit Model

The FFPU under study is a 160-MW oil-fired drum-type
boiler-turbine generator unit. It is represented by a third-order
multiple input-multiple output (MIMO) nonlinear model with
three inputs and three outputs [15]. The inputs are positions of
valve actuators that control the mass flow rates of fuel (u; in
pw), steam to the turbine (u9 in pu), and feedwater to the drum
(us in pu). The outputs are electric power (E in MW), drum

steam pressure (P in kg/cm?), and drum water level deviation
(L in m). The state variables are electric power (E'), drum steam
pressure (P), and fluid (steam-water) density (py). The follow-
ing equations are a summary of the third-order model by Bell
and Astrom [15]. The state equations are as follows:

dp

—r = 0.9u1 — 0.0018uy P*/® — 0.15us (1a)
dE

— = ((073us — 0.16)P%% — E)/10 (1b)
d

% = (141uz — (1.1up — 0.19)P)/85. (o)

The drum water level output is calculated using the following
algebraic equations:

g. = (0.85u3 — 0.14) P 4+ 45.59u; — 2.51uz — 2.09 (2a)
a, = (1/ps — 0.0015)/(1/(0.8P — 25.6) — 0.0015)  (2b)
L = 50(0.13p; + 60, + 0.11¢, — 65.5) 2¢)

where «a is the steam quality and q. is the evaporation rate
(kg/s). Positions of valve actuators are constrained to [0,1], and
their rates of change (pu/s) are limited to

—0.007 < duy /dt < 0.007 (3a)
—2.0 < duy/dt < 0.02 (3b)
—0.05 < dus/dt < 0.05. (3c)

C. Reference Governor

The multiobjective optimization is performed at the reference
governor. The essence of the reference governor in the coordi-
nated control is that of designing the optimal mappings from the
unit load demand F, 4 to the set points E; and Py

SPE :
SPP :

Eag — Ey
Eua — Py

which will be used to transform any unit load demand pattern
(Fw4,t) into optimal set point trajectories for the power (Ey, t)
and pressure (P, t) control loops.

The set point mappings SP are basically designed by solving
a multiobjective optimization problem that takes into account
the specified operation objectives and the steady-state model
of the plant. Then, the reference governor performs the design
process in three steps (Fig. 2):

e Determination of the feasibility regions for the decision
variables;

e Solution of the multiobjective optimization problem to
find optimal steady-state control signals; and

e Calculation of the set points through direct evaluation of
the steady-state model of the unit.

1) Feasibility Regions of Control Inputs: The feasibility re-
gions €2;,7 = 1, 2, 3 for the decision variables w1, us and ug are
determined using power-input operating windows. In this paper,
the nonlinear mathematical model of the FFPU is used to obtain
the operating windows of the control valve demands. The oper-
ating windows, or operating regions, are the sets of all feasible
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operating points for the FFPU. An operating point is declared
feasible when stable steady solution is achievable at that point,
whereas all imposed constraints are satisfied. Fig. 3 shows the
power-pressure operating window, which is determined through
simulations using the FFPU model in steady state, taking into
account equipment physical limitations (hard constraints) and
operational limitations (soft constraints). From the process op-
timization perspective, the power-pressure operating window is
the most important one. As shown in Fig. 3, it clearly indi-
cates that any required power can be generated at any pressure
value between the depicted upper and lower pressure limits.
The power-input operating windows can be determined using
the inverse static model of the plant

uy = (0.0018uy P8 4 0.15u3) /0.9 (4a)
ug = (0.16PY% + E)/0.73P%/8 (4b)
us = ((1.1ug — 0.19)P)/141 (4¢)

which is obtained by solving the FFPU plant model (1) in steady
state for the control inputs. The operating windows for the inputs
u1, us and uz can be generated by (4) using all possible power
E and pressure P in the power-pressure operating window.
The power-input operating windows for the control signals
u1,us2, and ug are shown in Fig. 4. When a unit load demand
FE14 is given, the operating windows block will generate the
feasible input regions 21, )5, and €23 from the power-input op-
erating windows (Fig. 4). Note that at any given power operating
point the fuel and steam valve demands may vary substantially,
whereas the feed water valve demand shows a relatively small
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Fig. 4. Power-input operating windows.

variation. Later, these facts will be of great relevance for opti-
mization.

2) Optimal Steady-State Control Inputs: Inthe second stage,
a multiobjective optimization problem is solved for a pre-
scribed value of the unit load demand FE,;q. The purpose is
to find, in a multiobjective sense, an optimal vector of units
u = [u; up us]” in the feasible regions ;,i = 1, 2, 3 previ-
ously determined, that minimizes the desired objective func-
tions. As is shown later in this paper, the objective functions
may account for load tracking error, thermal stress, heat loss
rate, pollution, or any other operating objective of interest to be
optimized.

At the end of the second stage, the calculated vector of op-
timal inputs u* and the corresponding unit load demand value
being considered, determine an optimal operating point, in the
specified multiobjective sense, for the plant.

3) Calculation of Set Points: In the third stage, the vector of
optimal control signals u* is used to generate a vector of optimal
set points through the steady-state model of the power unit

[EaPiLa]" = Mss([uj uj u3]")

where Mgg is the power unit steady-state model solved with
as input and the controlled variables as outputs. The steady-state
model is obtained by setting the dynamic equation (1) to zero

Ey = ((0.73u} — 0.16)/(0.0018u3)) (0.9u} — 0.15u3)
Py = 14145/ (1.1u% — 0.19)

(5a)
(5b)

where the demand on water-level deviation L, is simply set to
zero always.

D. Multiobjective Optimization

The core of the reference governor is the multiobjective op-
timization in the second stage. The multiobjective optimization
problem of the FFPU is to find an optimal solution in the so-
lution space that minimizes the load tracking error, fuel usage,
and throttling losses in the main steam and feedwater control
valves [16]. Therefore, the following objective functions can be
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described for minimization:

J1(u) = [Eua — E] (62)
Ja(u) = ug (6b)
J3(u) = —us (6¢)
Jy(u) = —us (6d)

where Fq is the unit load demand (MW) and F is the cor-
responding generation (MW), as provided by the steady-state
(5a). The objective function J; (u) accounts for the power gen-
eration error, Ja(u) accounts for fuel consumption through the
fuel valve position ;. Js(u) accounts for energy loss due to the
pressure drop across the steam valve. Because the pressure drop,
and consequently the energy loss, increases as the valve closes,
it is desired to keep it as widely open as possible; thus, maxi-
mizing ug, or equivalently, minimizing —us will reduce the loss
in the steam valve. Similarly, J4(u) accounts for energy loss
due to the pressure drop in the feedwater valve. Thus, the mul-
tiobjective optimization is to minimize all objective functions
defined previously under a given set of priorities or preferences
(3 defined as follows.

In the multiobjective optimization, the objective functions are
often in conflict with each other when performing the optimiza-
tion. Thus, it is proposed to minimize the maximum deviation
of the objective functions, instead of directly minimizing the
multiobjective functions [17]. The maximum deviation of the
multiobjective functions is defined as follows:

5777, == 'Pllaxk 6i7 51 2 0 (73)
J =min{J;(u);u € Q}, i=1,2,...,k (Tc)

where §,, is the maximum deviation of the multiobjective func-
tions, ¢; is weighed deviation, 3; is the preference value, J;
is the minimum possible value of the single objective function
Ji, and €2 is the solution space. The preference values give the
relative priorities of the objectives in searching for the optimal
solution. In this paper, the multiobjective optimization using the
PSO techniques is the main issue. With the objective functions
(6) and maximum deviation function (7), the PSO techniques
are used to find the optimal input u*.

III. PARTICLE SWARM OPTIMIZATION
A. Overview of the Basic PSO

Basically, the PSO was developed through simulation of birds
flocking in two-dimensional space [4]. The position of each bird
(called agent) is represented by a point in the X—Y coordinates,
and the velocity is similarly defined. Bird flocking is assumed to
optimize a certain objective function. Each agent knows its best
value so far (pbest) and its current position. This information is
an analogy of personal experience of an agent. Moreover, each
agent knows the best value so far in the group (gbest) among
pbests of all agents. This information is an analogy of an agent
knowing how other agents around it have performed. Each agent
tries to modify its position using the concept of velocity. The

Fig. 5. Concept of modification of a searching point by PSO.

velocity of each agent can be updated by the following equation:

E+1 _  k k
v, =wv; + ¢ rand; X (pbesti — s )

(2

+ c9 randy X (gbest — Sf) ®)
where v is velocity of agent ¢ at iteration k,w is weighting
function, ¢; and cy are weighting factors, rand; and rands are
random numbers between 0 and 1, s¥ is current position of agent
1 at iteration k, pbest; is the pbest of agent ¢, and gbest is the
best value so far in the group among the pbests of all agents.
The following weighting function is usually used in (8):

W = Wmax — ((wmax - wmin)/(itermax)) X iter (9)

where W ax 18 the initial weight, w,iy is the final weight, itery, ax
is the maximum iteration number, and ¢ter is the current iteration
number. Using the previous equations, a certain velocity, which
gradually brings the agents close to pbest and gbest, can be
calculated. The current position (search point in the solution
space) can be modified by the following equation:

st = of ot (10)

The model using (8) is called Gbest model. The model using (9)
in (8) is called inertia weights approach IWA). Fig. 5 shows the
concept of modification of a search point by the PSO.

B. Variations of the Basic PSO

1) Hybrid PSO [5], [6]: The HPSO uses the basic mecha-
nism of the PSO and the natural selection mechanism, which is
usually performed by evolutionary computation (EC) methods
such as genetic algorithm (GA). Because search procedure by
the PSO depends strongly on pbest and gbest, the search area can
be limited by them. However, by introducing a natural selection
mechanism, the effect of pbest and gbest is gradually elimi-
nated and a broader search area can be realized. Agent positions
with better performance replace those with poor performance.
However, the pbest information of each agent is maintained.
Therefore, both intensive search in a currently effective area
and dependence on the past high-performance position are used
at the same time. Fig. 6 shows the concept of search process by
the HPSO.

2) Evolutionary Self-Adapting PSO [7], [8]: The main dif-
ferences between EPSO and the basic PSO are an explicit selec-
tion procedure and self-adapting properties for its parameters.
Instead of moving the agents to find an optimal solution in
solution space, EPSO reproduces the agents with the move-
ment rule of PSO and the mutation rule of evolutionary strategy



556
Evaluated values of agent 1, 2
Agent2 s
Agent]lf \\ & are low and those of agent 3, 4
Pbest] & -7 ‘ N _#Pbest2 | are high.
Pbest3 Agent3 Il \ Agent4
(Gbest)a __ _ /" Mo ~®ppesta
\
Step 1.
Search points of agent 1, 2 are
changed to those of agent 3, 4 by
Pbest1® ® Pbest2 |  the selection mechanism
Agent3 Agent2
Phest3 gent, " ' Agentd
(Gbestha 7" N ~®ppestd
N
Step 2
p Pbest2 New seargh is begun from the new
o \ gent] ° search point.
Pbest1 N MAgen2
<] | —ep»
Phest3 Agen[3 I| } Agent4
es
(Gbest) ®~— -7 N~ =~ ®Phestd
Step 3.

Fig. 6. Concept of search process by HPSO.

(ES). Then, the best agents are selected by stochastic tourna-
ment through the evaluation. The general scheme of EPSO is as
follows.
REPLICATION: Each agent is replicated 7 times.
MUTATION': Each agent has its weights mutated.
REPRODUCTION: Each mutated agent generates an off-
spring according to the agent movement rule.
EVALUATION: Each offspring has its fitness evaluated.
SELECTION: By stochastic tournament, the best agents sur-
vive to form a new generation.
The movement rule for EPSO is the following:

new

; (11a)
w)y, = wi, + 7 N(0,1), gbest” = gbest + 7' - N(0,1) (11b)
(11¢)

where w, are the weights that undergo mutation, gbest” is the
gbest distributed randomly, 7, 7’ are learning parameters (either
fixed or treated as strategic parameters and therefore subject to
mutation), and N(0,1) is a Gaussian random variable with 0
mean and variance 1. Fig. 7 shows the concept of reproduction
and selection in EPSO.

This scheme benefits from two “pushes” in the right
direction—the selection process of ES and the agent movement
rule of PSO; therefore, it is natural to expect that it may display
advantageous convergence properties when compared with ES
or PSO alone. Furthermore, EPSO can also be classified as a
self-adaptive algorithm because it relies on the mutation and
selection of strategic parameters [7], [8].

3) Constriction Factor Approach [9], [10]: The basic sys-
tem equations of the PSO [(8)—(10)] can be considered as dy-
namic difference equations. Therefore, the system dynamics,
namely the search procedure, can be analyzed by the eigenvalue
analysis and controlled so the system converges and can search
different regions efficiently.

vl = wiyv; + wi (pbest; — s;) + wiy(gbest” — s;)

new new

S; =s; +v;
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The velocity of the constriction factor approach (simplest
constriction) can be expressed as follows, instead of (8) and (9):

V= K

; [vf 4 ¢1 X rand; X (pbesti — sf’)

+ ¢ x randy x (gbest — V)] (12a)

2
K= , Wwhere ¢ =c1 +co,p > 4.
12— —Vp?—4dp

(12b)

In the CFA, the ¢ must be greater than 4 to guarantee sta-
bility. However, as ¢ increases the weight K decreases and
diversification is reduced, yielding slower response. Therefore,
we choose 4.1 as the smallest ¢ that guarantees stability but
yields the fastest response. It has been observed here, as well
as in other paper [6], that ¢ = 4.1 leads to good solutions.
The CFA results in convergence of the agents over time. Un-
like other EC methods, the CFA ensures the convergence of the
search procedure based on mathematical theory. Therefore, the
CFA can generate higher quality solutions than the basic PSO
approach.

However, the constriction factor only considers dynamic be-
havior of one agent and the effect of the interaction among
agents. Namely, the equations were developed with a fixed set
of best positions (pbest and gbest), although pbest and gbest
change during search procedure in the basic PSO equation.

IV. NUMERICAL SIMULATION
A. Implementation of PSO Techniques in FFPU

The PSO techniques are applied to solve the multiobjective
optimization problem in the reference governor. Fig. 8 shows
the flowchart of the PSO in designing the reference governor.

1) Initialization: The first step of the PSO for the FFPU is
random generation of the agents in the solution space, which is
the feasible input regions €21, 25, and {23. The agents represent
the search points in the solution space, which are expressed by
controls uq, us, and u3. Moreover, the initial velocities are also
generated randomly within the same space. Whenever the unit
load demand is changed, the initial agents and velocities are
created in the solution space corresponding to the given unit
load demand. To expedite the search for an optimal solution, c;
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and co are set to 2, wWmax = 0.8, and wp,;n, = 0.3 in the basic
PSO and HPSO. However, CFA uses only two parameters, c;
and c,. For the best performance, the values of ¢; and ¢y are
set to 2.1 and 2.0, respectively. These values are obtained from
experimental results (Fig. 9). The number of agents is 40, and
the iteration is 130 for the basic PSO and its variations. The
initial pbests are equal to the current search points, and gbest is
found by comparing the pbests among the agents.

2) Evaluation: The evaluation of search point for each agent
is performed using maximum deviation function (7) in all PSO
techniques. However, there are some differences between the
PSO techniques in the procedures. In the basic PSO and CFA,
if the new position of the agent has better performance than
the current pbest, the pbest is replaced by the new position. If
the best new position among all pbests is better than the cur-
rent gbest, the ghbest is replaced by the best new pbest, and the
agent number with the best pbest is stored [11]. In the HPSO,
the natural selection mechanism is performed during the step
“Evaluation of search point of each agent” in Fig. 8. In finding
the best solution, the selection is achieved by forming sub-
groups from the entire group in the solution space. Then, each
agent is evaluated, and the best agent is found in each sub-
group. Finally, the agents with low performance are replaced by
the agent with the best performance in the subgroup. Thus, the
new search with the selection mechanism would provide more
chance to find an optimal solution. The current points, however,
are evaluated with the original pbests and gbest. Therefore, the
HPSO method realizes more intensive search nearby the best
agents [12]. In the EPSO, because EPSO applies the movement
rule (11), each agent generates an offspring. During the evalu-

10
g L 4
8
s
6 L
2 5
= 4l
3 L
2 L
1 L
0 . ‘ . . ‘
0 20 40 60 80 100 120
iteration

Fig. 9. Evaluation of convergence rate with different values of parameters.

ation, the better agent is selected between the two descendants,
which have different w and gbest. Thus, EPSO adapts to have
better weights while searching for an optimal solution. How-
ever, it has a drawback of requiring two evaluations per agent per
iteration.

3) Modification: In the basic PSO and HPSO, the modifi-
cation of current search point is performed by (8)—(10) in each
iteration. The first term in the right-hand side of (8) is for diver-
sification in the search procedure, which keeps trying to explore
new areas. The second and third terms are for intensification in
the search procedure. They help in moving toward the pbests
and/or gbest [13]. The method has a well-balanced mechanism
to use diversification and intensification efficiently in the search
procedure. However, the EPSO and CFA have their own modifi-
cation rule. The EPSO is performed with (11). First, each agent
is replicated twice. Then, w and gbest are mutated with fixed
learning parameters T and 7', respectively, as shown in (11),
which is called the “movement rule” in the EPSO. Finally, each
agent generates an offspring for the modification. The CFA per-
forms with (12) in this step. When the search algorithm looks
for an optimal solution in a solution space, it has a velocity
multiplied with the factor K of (12b) instead of w in the IWA
).

B. Simulation Results

In the following simulations, only the results by the basic
PSO technique are shown due to space limitations. However,
the comparison between the basic PSO and its three variations
is shown at the end of the simulation. Simulations deal with
three different cases:

Case 1) Minimize only Jy(u).

Case 2) Minimize J1(u) and Jo(u).

Case 3) Minimize Jy(u), Jo(u), Js(u), and Jy(u).

The objective functions are given in (6), and a vector of
preference values is given as = [1,0.5,1,0]. This means
that 3; = 1 is for Ji(u), B2 = 0.5 is for Jo(u), 33 = 1 is for
J3(u), and B4 = 0 is for Jy(u). The values imply the priorities
of each objective function in the multiobjective optimization
problem, where 1 is the highest and O is the lowest priorities in
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Fig. 11.  Solution space by the given unit load demand.

the optimization. To select the appropriate values of parameters
C1,C2, Whmax, and wpin, experiments are performed in trial
and error, by testing the convergence rate with many different
parameter values. Fig. 9 shows the evaluation of convergence
rate with different values of parameters.

1) Solution Space: Fig. 10 shows a unit load demand that
resembles a typical load cycle. It has different rising and falling
slopes and different level of constant powers. With the given unit
load demand and the plant model, the solution space is obtained
using the power-input operating windows (Fig. 4). Fig. 11 shows
the solution space for the given unit load demand. The gaps
between upper and lower limits are the solution space for the
optimization process.

2) Optimal Solution Trajectories: The next step is to per-
form the PSO for the multiobjective optimization with prede-
fined objective functions and preference values. Figs. 12-14
show the optimal input valve trajectories that are optimal solu-
tions found by the PSO in the solution space. The result agrees
with the practice that for a long time, electric utilities have used
the heat rate method [18] to evaluate the actual performance of
power units, and the heat rate can be improved while fuel usage
and throttling losses in the main steam and feedwater valves
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are taken into account. Moreover, Buchwald [19] showed that
lowering the pressure drop across the control valves can reduce
the energy dissipated in a process, so that the energy required
to operate many processes can be significantly reduced.

In Fig. 12, as the number of objectives is increased, fuel
consumption is reduced for cases 2 and 3. Fig. 13 shows that
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the valve opening ws is increased as the number of objectives
is increased, which is also desirable because the pressure valve
was required to be kept open as wide as possible in case 3. In
contrast, Fig. 14 shows that the results on the feedwater valve
are about the same for all cases. This is because the solution
space for the feedwater valve is very small, as shown in Fig. 11.
All simulation results are improved as the number of objectives
is increased. These optimal solutions are the values of gbest that
are found though the PSO technique.

3) Set Point Trajectories: Finally, the power and pressure
set points are obtained by set point scheduler (5), as shown
in Figs. 15 and 16, respectively. The demand power set point
(Eq4) is almost the same for all cases as the unit load demand
(Fig. 15). The demand pressure set points (P;) mapped for
different number of objective functions are shown in Fig. 16. It
is interesting to note that although the demand power set point
profile is almost the same for all cases, the demand pressure set
point profiles differ significantly among cases. This is because
the power-pressure operating window is quite large and the same
amount of power can be produced on a wide range of pressure
as shown in Fig. 3. As additional objective functions are added
in the optimization, the plant is operating more conservatively
in lower pressure.

C. Comparison Among the PSO Techniques and GA

Table I compares the performance of the four different PSO
techniques and GA. The results by GA are obtained using the
general method of GA. GA used the same preference values and
objective functions (6), [20]. The performance is given numer-
ically by integrating the objective functions (6) over one load
cycle (120 min) for all cases. For case 1, the first column is
highlighted because only the first objective function Ji(u) is
included in the optimization. The remaining columns are not
optimized. Similarly, in case 2 the first two columns are high-
lighted because both objective functions .J; (u) and Jo(u) are
included in the optimization. However, in case 3 all columns are
highlighted because all four objective functions are considered
in the optimization.
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Fig. 16. Demand pressure set point trajectories.

As we examine the objective function .J; (u) in all three cases,
it is clear that HPSO performs the best among all optimization
techniques. The objective function J;(u) shows that HPSO still
performs the best for cases 2 and 3. However, as more objective
functions are added in case 3, EPSO performs slightly better
than HPSO for the objective functions J3(u) and Jy (u). Table II
summarizes the techniques that perform the best in each case.
It shows that HPSO performs the best in cases 1 and 2, and as
good as EPSO in case 3.

Table I compares the average performance of the techniques,
rather than the instantaneous error for Ji(u). Therefore, the
values of about 13 in case 3 are obtained by integrating the
generation error for 120 min. The average instantaneous error
is about 0.108 MW. For example, the error is 0.08% at the load
demand of 130 MW. Objective functions Js(u) and Jy(u) re-
flect the negative of the openings of steam and water valves,
respectively. Because the power-input operating window of the
water valve opening is very small (Fig. 4), the objective function
Jy4(u) is not included in the optimization by assigning a zero
preference value. Objective function J3(u) accounts for energy
loss due to the pressure drop across the steam valve. Because
the pressure drop, and consequently the energy loss, increases
as the valve closes, it is desired to keep it as widely open as
possible. Thus, maximizing the steam valve us or minimizing
—ug will reduce loss due to the pressure drop in the steam valve.
This makes the steam valve almost constant to the upper limit.
This forces the boiler to lower the pressure demand in follow-
ing the demand more closely (Fig. 16). To keep the pressure
lower, fuel needs to be reduced (Fig. 12). However, this is at
the expense of generation error; it reduces generation and thus
slightly increases the generation error reflected in the objective
function J; (u) (Table I, case 3).

In the basic PSO and HPSO, the weighting function is ad-
justed by the IWA (9), which gives a fast initial response and
then allows the weight to decrease as the convergence is oc-
curring. Moreover, EPSO has an evolutionary strategy for the
weighting function (11b) that is adaptively changed to obtain a
fast convergence. In contrast, the weight is a fixed constant in
the CFA. Although the weight is selected to guarantee stability,
it does not give the fast initial response, and before it converges,
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TABLE I
COMPARISON OF PERFORMANCE FOR DIFFERENT PSO TECHNIQUES
Case Case [ Case 2 Case 3
Objective
Optimization Ji(u) Jo(u) J3(u) Ju(u) Jitw) Jo(u) J3(u) Ju(u) Ji(w) Jo(u) Js(u) Ja(u)
techniques
Basic PSO 6.9E-9 67.509 -95.247 -56.797 1.162 58.358 | -103.345 | -56.131 13.202 55.943 | -106.232 | -56.647
CFA 0.0019 63.779 -98.304 -56.557 1.485 59.912 | -102.072 | -56.131 13.215 56.403 | —105.904 | -56.495
HPSO 6.7E-9 68.195 —94.847 -56.682 0.074 56.110 | -105.905 | -56.352 11.625 55.940 | -106.258 | -56.850
EPSO 0.00086 65.906 -96.335 -56.873 0.425 57.063 | —104.948 | —-56.486 13.122 55.942 | -106.306 | -57.168
GA 0.03000 61.122 -93.314 -56.135 1.538 58.417 | -101.202 | -55.557 13.476 56.707 | -105.562 | -55.571
TABLE I

BEST-PERFORMING TECHNIQUES FOR EACH CASE

Case Case 1 Case 2 Case 3
Objective
Ji(w) HPSO HPSO HPSO
Jow) X HPSO HPSO
Js(u) X X EPSO
Jyw) X X EPSO

the load demand changes dynamically in the FFPU. In other
words, the CFA is designed for a static optimization problem
and therefore is less efficient in a dynamic optimization problem.
This is the disadvantage of the CFA.

In view of the computational complexity and efficiency,
HPSO is preferred over EPSO because EPSO needs two eval-
uations of the performance per agent in each iteration. Never-
theless, all simulation results show that PSO techniques can be
accommodated well in the multiobjective optimization problem.
They can also be adopted for online implementation because the
pressure set point needs to be updated only when the unit load
demand is changed during the load cycle. Due to the fast conver-
gence of PSO techniques, it is possible to search for the optimal
solution at every different unit load demand. When the unit
load demand is changing continuously, the optimization should
be performed quickly if the unit is to be in the load-following
mode. Therefore, a fast optimization scheme such as the PSO
techniques is preferred. For some units, where the unit load de-
mand is given in advance, the multiobjective optimization can
be performed in advance, and the pressure set point can be made
available in the form of a lookup table. However, when the unit
load demand is given on a very short notice or the operation
procedure changes due to changing priorities of different objec-
tive functions [given by 3 in (7)], the pressure set points need to
be calculated again. Because the real power plant model is very
large and of high order, any savings in computation time will be
valuable.

V. CONCLUSION

The PSO technique is presented as an alternative optimization
technique for solving a multiobjective optimization problem.
The feasibility of using the PSO is demonstrated in the design
of optimal set points for the multiobjective optimal power plant

operation. The optimal mapping between the unit load demand
and pressure set point is realized. Furthermore, the mapping can
also be realized for time-varying load demand. This paper shows
that improvements can be made to the basic PSO technique to
solve the multiobjective optimization problem effectively. It has
been demonstrated that the hybrid PSO technique improves the
convergence and performs the best compared with other PSO
techniques in FFPU. Finally, the feasibility of online implemen-
tation is discussed in the event that the unit load demand is given
in advance.

Because the PSO techniques are random search with exper-
imental trials, they have a weakness in the theoretical proof
of convergence. Therefore, in future work, we plan to study
the PSO techniques with stochastic analysis to show how the
particles move to the optimal solution.
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